941 research outputs found

    Automated detection of greenhouse structures using cascade mask R-CNN

    Get PDF
    Automated detection of the content of images remains a challenging problem in artificial intelligence. Hence, continuous manual monitoring of restricted development zones is critical to maintaining territorial integrity and national security. In this regard, local governments of the Republic of Korea conduct four periodic inspections per year to preserve national territories from illegal encroachments and unauthorized developments in restricted zones. The considerable expense makes responding to illegal developments difficult for local governments. To address this challenge, we propose a deep-learning-based Cascade Mask region-based convolutional neural network (R-CNN) algorithm designed to perform automated detection of greenhouses in aerial photographs for efficient and continuous monitoring of restricted development zones in the Republic of Korea. Our proposed model is regional-based because it was optimized for the Republic of Korea via transfer learning and hyperparameter tuning, which improved the efficiency of the automated detection of greenhouse facilities. The experimental results demonstrated that the mAP value of the proposed Cascade Mask R-CNN model was 83.6, which was 12.83 higher than baseline mask R-CNN, and 0.9 higher than Mask R-CNN with hyperparameter tuning and transfer learning considered. Similarly, the F1-score of the proposed Cascade Mask R-CNN model was 62.07, which outperformed those of the baseline mask R-CNN and the Mask R-CNN with hyperparameter tuning and transfer learning considered (i.e., the F1-score 52.33 and 59.13, respectively). The proposed improved Cascade Mask R-CNN model is expected to facilitate efficient and continuous monitoring of restricted development zones through routine screening procedures. Moreover, this work provides a baseline for developing an integrated management system for national-scale land-use planning and development infrastructure by synergizing geographical information systems, remote sensing, and deep learning models

    Black holes from high-energy beam--beam collisions

    Get PDF
    Using a recent technique, proposed by Eardley and Giddings, we extend their results to the high-energy collision of two beams of massless particles, i.e. of two finite-front shock waves. Closed (marginally) trapped surfaces can be determined analytically in several cases even for collisions at non-vanishing impact parameter in D\ge 4 space-time dimensions. We are able to confirm and extend earlier conjectures by Yurtsever, and to deal with arbitrary axisymmetric profiles, including an amusing case of ``fractal'' beams. We finally discuss some implications of our results in high-energy experiments and in cosmology.Comment: 17 pages Revtex, 1 figure, references adde

    Faddeev calculations for the A=5,6 Lambda-Lambda hypernuclei

    Full text link
    Faddev calculations are reported for Lambda-Lambda-5H, Lambda-Lambda-5He and Lambda-Lambda-6He in terms of two Lambda hyperons plus the respective nuclear clusters, using Lambda-Lambda central potentials considered in past non-Faddeev calculations of Lambda-Lambda-6He. The convergence with respect to the partial-wave expansion is studied, and comparison is made with some of these Lambda-Lambda hypernuclear calculations. The Lambda-Lambda Xi-N mixing effect is briefly discussed.Comment: submitted for publicatio

    Adsorption of mono- and multivalent cat- and anions on DNA molecules

    Get PDF
    Adsorption of monovalent and multivalent cat- and anions on a deoxyribose nucleic acid (DNA) molecule from a salt solution is investigated by computer simulation. The ions are modelled as charged hard spheres, the DNA molecule as a point charge pattern following the double-helical phosphate strands. The geometrical shape of the DNA molecules is modelled on different levels ranging from a simple cylindrical shape to structured models which include the major and minor grooves between the phosphate strands. The densities of the ions adsorbed on the phosphate strands, in the major and in the minor grooves are calculated. First, we find that the adsorption pattern on the DNA surface depends strongly on its geometrical shape: counterions adsorb preferentially along the phosphate strands for a cylindrical model shape, but in the minor groove for a geometrically structured model. Second, we find that an addition of monovalent salt ions results in an increase of the charge density in the minor groove while the total charge density of ions adsorbed in the major groove stays unchanged. The adsorbed ion densities are highly structured along the minor groove while they are almost smeared along the major groove. Furthermore, for a fixed amount of added salt, the major groove cationic charge is independent on the counterion valency. For increasing salt concentration the major groove is neutralized while the total charge adsorbed in the minor groove is constant. DNA overcharging is detected for multivalent salt. Simulations for a larger ion radii, which mimic the effect of the ion hydration, indicate an increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Black Holes at the LHC

    Full text link
    In these two lectures, we will address the topic of the creation of small black holes during particle collisions in a ground-based accelerator, such as LHC, in the context of a higher-dimensional theory. We will cover the main assumptions, criteria and estimates for their creation, and we will discuss their properties after their formation. The most important observable effect associated with their creation is likely to be the emission of Hawking radiation during their evaporation process. After presenting the mathematical formalism for its study, we will review the current results for the emission of particles both on the brane and in the bulk. We will finish with a discussion of the methodology that will be used to study these spectra, and the observable signatures that will help us identify the black-hole events.Comment: 37 pages, 14 figures, lectures presented in the 4th Aegean Summer School on Black Holes, 17-22 September 2007, Lesvos, Greece, typos corrected, comments and references adde

    Search for a W' boson decaying to a bottom quark and a top quark in pp collisions at sqrt(s) = 7 TeV

    Get PDF
    Results are presented from a search for a W' boson using a dataset corresponding to 5.0 inverse femtobarns of integrated luminosity collected during 2011 by the CMS experiment at the LHC in pp collisions at sqrt(s)=7 TeV. The W' boson is modeled as a heavy W boson, but different scenarios for the couplings to fermions are considered, involving both left-handed and right-handed chiral projections of the fermions, as well as an arbitrary mixture of the two. The search is performed in the decay channel W' to t b, leading to a final state signature with a single lepton (e, mu), missing transverse energy, and jets, at least one of which is tagged as a b-jet. A W' boson that couples to fermions with the same coupling constant as the W, but to the right-handed rather than left-handed chiral projections, is excluded for masses below 1.85 TeV at the 95% confidence level. For the first time using LHC data, constraints on the W' gauge coupling for a set of left- and right-handed coupling combinations have been placed. These results represent a significant improvement over previously published limits.Comment: Submitted to Physics Letters B. Replaced with version publishe

    Search for the standard model Higgs boson decaying into two photons in pp collisions at sqrt(s)=7 TeV

    Get PDF
    A search for a Higgs boson decaying into two photons is described. The analysis is performed using a dataset recorded by the CMS experiment at the LHC from pp collisions at a centre-of-mass energy of 7 TeV, which corresponds to an integrated luminosity of 4.8 inverse femtobarns. Limits are set on the cross section of the standard model Higgs boson decaying to two photons. The expected exclusion limit at 95% confidence level is between 1.4 and 2.4 times the standard model cross section in the mass range between 110 and 150 GeV. The analysis of the data excludes, at 95% confidence level, the standard model Higgs boson decaying into two photons in the mass range 128 to 132 GeV. The largest excess of events above the expected standard model background is observed for a Higgs boson mass hypothesis of 124 GeV with a local significance of 3.1 sigma. The global significance of observing an excess with a local significance greater than 3.1 sigma anywhere in the search range 110-150 GeV is estimated to be 1.8 sigma. More data are required to ascertain the origin of this excess.Comment: Submitted to Physics Letters
    corecore